
LECTURE 9
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1. Geometric properties

We introduce certain geometric properties of a�ne algebraic varieties. The word
"geometric" can be understood as indicating that these properties only depends on
k̄, not on k.

1.1. Dimension.

De�nition 1.2. Let V ⊂ An
k be an a�ne algebraic variety. Recall we have an

associated �eld K̄(V ) := Frac(K̄[X]/I(V )). De�ne the dimension of V to be the
transcendence degree of K̄(V ) over K̄.

De�nition 1.3. dimAn
k = n. More generally, if V ⊂ An

k is a d-dimensional a�ne
subspace (i.e. a translate of a d-dimensional sub-vector space of k̄n), then dimV =
d.

Remark 1.4. For a general algebraic set in An
k , its irreducible components can have

di�erent dimensions. For example, V = V (XZ, Y Z) ⊂ A3
k is an algebraic set. It

has two irreducible components: the z-axis and the x− y plane.

Theorem 1.5. Let V ⊂ An
k be an a�ne algebraic variety. Then dimV = n − 1

if and only if there is a nonzero irreducible polynomial f(X) ∈ k̄[X] such that

V = V (f). Such a V is called a hypersurface.

Example 1.6. V (Xn + Y n − 1) ⊂ A2
Q is a one-dimensional variety.

1.7. The local rings. Let V ⊂ An
k be an a�ne algebraic variety. Let p ∈

V . Recall that p determines a maximal ideal mp ⊂ k̄[V ], de�ned by mp :={
f ∈ k̄[V ]|f(p) = 0

}
. De�ne the local ring of V at p, denoted by OV,p, to be the

localization of k̄[V ] at mp i.e. the subring
{
f/g ∈ k̄(V )|f, g ∈ k̄[V ], g(p) 6= 0

}
of

k̄(V ). We will still use mp to denote the unique maximal ideal of OV,p. Note that

we have Op,V /mp
∼−→ k̄, the identi�cation given by evaluating functions in OV,p

at p. The quotient mp/mp
2 is naturally a module over Op/mp

∼= k̄. De�ne the
dimension of V at p to be dimk̄ mp/mp

2.

1.8. Smoothness.

De�nition 1.9. Let V ⊂ An
k be an a�ne algebraic variety. Let p ∈ V . We say V is

smooth, or nonsingular, at p, if there exists a set of generators f1, · · · , fm of I(V ),

the matrix ( ∂fi
∂Xj

(P ))1≤i,≤m,1≤j≤n has rank equal to n−dimV . If V is nonsingular

at any point in V , then we say V is nonsingular.

Proposition 1.10. Smoothness is independent of the choice of the set of generators

of I(V ). Moreover, V is nonsingular at p ∈ V if and only if dimk̄ mp/mp
2 = dimV .
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Example 1.11. Let V = V (f) ⊂ An
k be a hypersurface. Then V is singular at a

point p ∈ V if and only if ∂f/∂Xi(P ) = 0,∀1 ≤ i ≤ n.

Example 1.12. Suppose char k 6= 2, 3. Let V1 = V (Y 2 − X3 − X), V2 = V (Y 2 −
X3 −X2) ⊂ A2

k. V1 is nonsingular. V2 is singular at the point (0, 0).

2. Projective varieties

Roughly speaking, projective varieties are zero loci of homogeneous polynomials
in projective spaces. Why do we introduce projective spaces? Consider for example
the question of �nding the intersection points of a line and a conic in the plane.
Since they are de�ned by equations of degrees 1 and 2 respectively, one expects to
�nd 2 = 1 · 2 intersection points in general.

In Cartesian geometry, there are three exceptions. Firstly, we may have a circle
X2 + Y 2 = 1 and a line X = 2, that do not intersect over R. This is resolved by
looking at solutions in C, and in this case we have two solutions (2,±

√
−3).

Secondly, the line in question may be tangent to the conic. In this case we only
have one intersection point, even over C. However there is a precise sense in which
a tangent point should count as an intersection of multiplicity 2, and if we take
multiplicities into account, we are still in good shape.

The third issue is that we may have a line X = Y and a hyperbola X2−Y 2 = 1,
which are asymptotic to each other. In this situation we would like to think that
they are tangent to each other "at in�nity", i.e. we have an intersection "at in�nity"
of multiplicity 2. The projective spaces are precisely the extension of the ordinary
a�ne spaces that include these points at in�nity.

We �x a perfect �eld k with algebraic closure k̄.

De�nition 2.1. The n-dimensional projective space over k is Pn
k := k̄n+1−{0} / ∼.

Where (x0, · · · , xn) ∼ (y0, · · · , yn) if ∃λ ∈ k̄× such that yi = λxi,∀i. The point
represented by (x0, · · · , xn) is denoted by [x0 : · · · : xn]. This notation is called the
homogeneous coordinates. The Galois group Gk acts on Pn

k . Let k ⊂ l ⊂ k̄. De�ne
Pn
k (l) := {[x0 : · · · : xn]|xi ∈ l,∀i} . We have Pn

k (l) = (Pn
k )Gal(k̄/l).

Remark 2.2. If [x0 : · · · : xn] ∈ Pn
k (l), it does not necessarily follow that each xi ∈ l.

However, for any i such that xi 6= 0, we have xj/xi ∈ l,∀j .

Let f be a polynomial in k̄[X0, · · · , Xn]. Then the value of f at a point p ∈ Pn
k

is not well de�ned. However, if f is homogeneous, then the condition f(p) = 0 has
a well de�ned meaning. Thus if {fi} is a set of homogeneous polynomials, we can
de�ne its common zero locus V ({fi}) ⊂ Pn

k . We observe that if I ⊂ k̄X0, · · · , Xn is
the ideal generated by {fi}, then for any g ∈ I that is also homogeneous, g vanishes
on V ({fi}).

De�nition 2.3. An ideal I ⊂ k̄[X0, · · ·Xn] is said to be homogeneous, if it is
generated by homogeneous polynomials.

De�nition 2.4. Let I ⊂ k̄[X0, · · ·Xn] be a homogeneous ideal. De�ne its zero locus
V (I) ⊂ Pn

k to be the set {[X0 : · · · : Xn]|f(X0, · · · , Xn) = 0,∀ homogeneous f ∈ I}.
A subset of Pn

k of this form is called a projective algebraic set.

De�nition 2.5. Let V ⊂ Pn
k be a projective algebraic set. De�ne the homogeneous

ideal of V to be the ideal I(V ) of k̄[X0, · · · , Xn] generated by the homogeneous
polynomials that vanish on V . If I(V ) is generated by homogeneous polynomials
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in k[X0, · · ·Xn], we say V is de�ned over k. In this case Gk acts on V , and for
k ⊂ l ⊂ k̄, the set V (l) := V ∩ Pn

k (l) is the set of points in V �xed by Gal(k̄/l).

Example 2.6. Let V = V (X2 + Y 2 − 3Z2) ⊂ P2
Q. Then V is de�ned over Q, and

V (Q) = ∅. To see this, suppose p = [x : y : z] ∈ V (Q). We may assume xy, z ∈ Z
and gcd(x, y, z) = 1. Then x2 + y2 ≡ 0 mod 3. Since −1 is not a square modulo 3,
we have x ≡ y ≡ 0 mod 3. But then 9|x2 + y2 = 3z2, so 3|z, contradiction.

De�nition 2.7. Let V ⊂ Pn
k be a projective algebraic set. We say V is a projective

variety, if I(V ) is a prime ideal of k̄[X0, · · · , Xn].

Remark 2.8. We used the associated ideal / homogeneous ideal to an a�ne / pro-
jective algebraic set to de�ne whether it is a variety. However there is an intrinsic
de�nition using the Zariski topology, so that an a�ne / projecrive algebraic set
is a variety if and only if it is irreducible under the Zariski topology. As in the
a�ne case, any projective algebraic set can be uniquely written as a union of its
irreducible components, which are projective varieties.
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